EXPANDABLE MULTIFUNCTION CONTROL PANEL

O PROGRAMMING FROM KEYPAD

BS EN ISO 9001

Thi s Control panel has been devel oped and manufactured according to the hi ghest standards of qual ity, reli ability and performance adopted by BENTEL SECURI TY srl.

I nstallation of this Control panel mest be duly carried out in accordance with the local I aws in force.

BENTEL SECURI TY srl shall not be responsi ble for danage arising fromimproper instal ation or mai ntenance by unauthorized personnel.

Use the Ommi a- Acadeny40 3. 0 sof tware rel ease or a successi ve rel ease to programthis Control panel.
Where features and programming procedures apply to Academy40 and Acadeny40/S the product will be referred to as the Panel.

Where feat ures and programming procedures apply to one of the appl i ances in particular the product name will be specified.

Academy40 and Acadeny40/S compl y wi th:
Low vol tage: EN 60950/ 1996 + A4/ 1997
Emi ssi on: EN 50081-1/ 1992
I mmuni ty: EN 50130-4/ 1995 + A1/ 1999
Burgl ar control: CEl 79/ $\mathbf{2}^{\text {a }}$ Ed. 1993
Termi nal Equi prent (TE): TBR 21 -- 1/ 1998
BENTEL SECURI TY srl reserves the right to change the technical specifications of this product without prior notice.
KEYPAD OPERATIONS 5
General rules for the INSTALLER MENU 5
INSTALLER MENU 6
View buffer 7
Zones status 7
Outs managements 8
Cancel call queue 8
Voice functions 8
Telephone-number Programming 10
Description Programming (labels) 10
Installer code 11
User codes 11
Digital keys 13
Enable 15
Parameter programming 16
Firmware release 16
PARAMETER PROGRAMMING 17
General rules for programming from Keypad 17
Key readers in Configuration 18
Keypads in Configuration 18
Input expanders in Configuration 18
Output expanders 19
Power stations 19
Enable Keypad Partitions 19
Enable Key reader Partitions and Masks 19
Zone Parameters 20
Zone Type 21
Zone Attributes 21
Zone Alarm Cycles 22
Zone Partitions 22
Zone status Voice messages 22
Off time 23
Output Type 23
Reserved (for manual commands) 23
How to program Main Unit Outputs (Block no. 17) 23
How to program Expander no. 1 Outputs 24
How to program Expander no. 2 Outputs 24
How to program Expander no. 3 Outputs 24
How to program Expander no. 4 Outputs 24
How to program Expander no. 5 Outputs 25
How to program Expander no. 6 Outputs 25
How to program Expander no. 7 Outputs 25
How to program Expander no. 8 Outputs 25
Partition Entry time 25
Exit time 25
Last exit time 26
Primary and Subordinate Partitions (Depends on) 26
Jump other answering devices 26
Rings 26
Disable Line Tone Check / Dialling mode 27
Answerphone message 27
Digital Communicator Attempts 27
Number to dial, Customer code and Protocol 27
Definition of Digital Communicator Actions 1 though 32 28
Definition of Digital Communicator Actions 33 through 64 29
Definition of Digital Communicator Actions 65 through 96 29
Definition of Digital Communicator Actions 97 through 128 29
Definition of Digital Communicator Actions 129 through 160 29
Definition of Digital Communicator Actions 161 through 192 29
Definition of Digital Communicator Actions 193 through 224 29
Definition of Digital Communicator Actions 225 through 250 29
Dialler Call Attempts 30
Recall on success 30
Repetition time and Dialler Telephone numbers 30
Dialler Actions 31
Callback and Test call 31
Teleservice Call Attempts 31
Enable Teleservice numbers 32
Teleservice numbers 32
Teleservice Customer code 32
Output actions for Zone alarms 32
Output actions for Tamper on zone 33
General events-Part 1 33
General events-Part 2 33
Spot events 33
Digital Communicator and Dialler Actions for Alarm on zone 34
Digital Communicator and Dialler Actions for Tamper on zone 34
Digital Communicator and Dialler Actions for General events (Part 1) 34
Digital Communicator and Dialler Actions for General events-Part 2 35
Digital Communicator and Dialler Actions for Spot events 35
Digital Communicator and Dialler Actions for Reset Alarm on zone 35
Digital Communicator and Dialler Actions for Reset Tamper on zone 35
Digital Communicator and Dialler Actions for Reset General events -Part 1 35
Digital Communicator and Dialler Actions for Reset General events -Part 2 36
Initialize Test event 36
Test event parameters 36
Date and Time 36
Date format 37
Mains Filter time 37
Keypad Lockout on Code Error 37
General options 38
Lock Installer code 38
EVENT TABLES 39
General events-Part 1 39
General events-Part 2 39
Spot events 39

Code 32 (Installer code) allows the installer to program and change the Panel parameters, and:
View buffer View the event buffer.
Zones status View zone alarm/bypass status.
Outs management Operate the Reserved outputs manually.
Clear call queue Clear the outgoing call queue.
Voice functions Record, play and delete voice messages (these functions require installation of the OmniaVOX kit).
Tel. Numb. progr. Program the Phonebook.
Descript. progr. Assign labels to the system devices.
Installer code Change the Installer code PIN.
User codes Program the User codes.
Digital keys Program the digital keys.
Parameter progr. Access parameter programming.
Revision View the Panel firmware release.

General rules for the INSTALLER MENU

${ }^{9}{ }_{\downarrow}{ }_{\downarrow}$ Use these keys to scroll the menu.
$\xrightarrow{\text { A* }} \xrightarrow{B+\infty}$ Use these keys to scroll the rows.
Use this key to exit the parameter without saving changes. Press this key from the INSTALLER MENU to exit the programming session.

Use these keys to enable/disable options.
ENER Use this key to confirm programming.
$\pm \boldsymbol{-}$ These signs indicate that the corresponding option is enabled (+) or disabled (--).
Identifier numbers The identifier number will be used instead of the assigned label.
Low-pitched beep This is the Request Denied beep.

+ Access to the INSTALLER MENU requires User authorization. All partitions must be disarmed before starting the parameter programming phase.

Access to the INSTALLER MENU will:
$>$ lock all keypads----other than the one in use (the locked keypads will show the label of the keypad in use)
> delete the alarm memory
> force all outputs to standby status
> stop the event evaluation
> stop the ongoing telephone call, and put the call queue on hold Therefore, the Panel can be considered out-of-service.


```
> unlock all the keypads
> clear the zone-cycle counter
> delete alarms for BPI device---tamper---false electronic key
restart calls from the interrupted call---with the exception of the teleservice call
> if the Panel is open----the open panel alarm will be disabled until it is closed.
```

Select the View buffer option from the INSTALLER MENU to view the event buffer.
Each event gives a detailed description of the event type; location; time and user, as follows.
> Event type
> Event identifier number
> User
> User identifier number
> hour-minute-year-month-day
Some events do not have all these parameters.

+ The event buffer can be scrolled back and forward. However, if the forward key is pressed on the last event the buffer will show the first event, and if the back key is pressed on the first event the buffer will show the last event.

From the installer menu ...			I NSTALL. MENU $\uparrow \downarrow$ Vi ew buffer
1	Select the View buffer option-use ${ }^{9}+$ or $^{Q_{\nu}}$ to scroll.	$\begin{gathered} 0_{\downarrow} \\ \vdots \\ 0_{\downarrow} \end{gathered}$	I NSTALL. MENU $\uparrow \downarrow$ Vi ew buffer
2	Press ENEPS.	ENEE	$\begin{array}{\|l\|} \hline \hline \text { Ev. } 198 \text { Type } \longleftrightarrow \uparrow \downarrow \\ \text { Mai ns OFF } \\ \hline \end{array}$
3		${ }^{9}+$	Ev. 197 Type $\leftarrow \rightarrow \uparrow \downarrow$ Tamper zone open
4	Use $\stackrel{\text { A* }}{\text { * }}$ or $\stackrel{\text { B\# }}{\xrightarrow{*}}$ to scroll the information rows.	$\stackrel{\text { B\# }}{\square}$	$\begin{aligned} & \text { Ev. } 197 \text { Zone } \longleftrightarrow \rightarrow \uparrow \downarrow \\ & \text { South ent rance } \end{aligned}$
5		$\stackrel{\text { B\# }}{\square}$	$\begin{aligned} & \text { Ev. } 197 \text { I nst } \underset{\text { 17: } 49}{\leftarrow} \text { 05/ 03/ } 1996 \\ & \hline \end{aligned}$
6		$\begin{array}{\|c} \text { EEC } \\ \text { EXCC } \end{array}$	I NSTALL. MENU $\uparrow \downarrow$ Vi ew buffer

Zones status

Select the Zones status option from the INSTALLER MENU to:
----bypass / unbypass the zones
----view alarm, tamper or bypassed status
Double balanced zones can have Short, Standby, Alarm or Tamper.
Balanced zones can have Short, Standby or Alarm status.
NC or NO zones can have Standby or Alarm status only.

+ When a zone changes status the Zones status option may show a sequence of changes before reaching the final status. For example, when a Double Balanced zone changes from Standby to Tamper status, the Zones status option may show Alarm status for several seconds, before changing to Tamper.

View zones

From the INSTALLER MENU ...			I NSTALL. MENU $\uparrow \downarrow$ Vi ew buffer
1	Select the Zones status option-use ${ }_{9}^{9}$ or ${ }^{O_{\downarrow}}$ to scroll.	$\begin{gathered} 0_{\downarrow} \\ \vdots \\ 0_{\downarrow} \end{gathered}$	I NSTALL. MENU $\uparrow \downarrow$ Zones status
2	Press ENEES.	ENEA	South ent rance St dby
3	The status of the first zone will be shown. Use ${ }^{9}+$ or ${ }^{0}{ }_{\downarrow}$ to scroll the zones.	-	Stai \mathbf{r} wi ndow Al arm Active
4		$\frac{\mathrm{OFf}}{\frac{\mathrm{OFS}}{R R S}}$	St ai r wi ndow Al arm Bypassed
5		$\frac{\text { EEC }}{\text { ExCC }}$	I NSTALL. MENU $\uparrow \downarrow$ Vi ew buffer

Outs managements

Select the Outs management option.

From the INSTALLER MENU ...			$\begin{aligned} & \hline \text { INSTALL. MENU } \uparrow \downarrow \\ & \text { Vi ew buffer } \end{aligned}$
1	Select the Outs management option-use $\square_{\text {ar }}^{\text {or }}$ to scroll.	$\begin{gathered} \hline 0 . \\ : \\ 0 \\ 0 \end{gathered}$	I NSTALL. MENU $\uparrow \downarrow$ Outs managenent
2	Press (10x]	EN(0)	$\begin{array}{\|l\|} \hline \text { A arm Si ren } \\ \text { ON-Act. OFF- St dby } \\ \hline \end{array}$
3	The label of the first Output will be shown. Select the Output-use ${ }^{9}+{ }_{4}$ or ${ }^{0}{ }_{4}$ to scroll.	0	Fi re si ren ON-Act. OFF- St dby
4	status.		$\begin{array}{\|l\|} \hline \text { Fi re si ren } \\ \text { ON- Act. OFF- St dby } \\ \hline \end{array}$
5	Press $\frac{\text { EEC }}{\text { ExC }}$ to step back to the INSTALLER MENU.		I NSTALL. MENU Vi ew buffer

Cancel call queue

Select the Cancel call queue option.

	From the INSTALLER MENU ...	I NSTALL. MENU $\uparrow \downarrow$ Vi ew buffer
1	Select the Cancel call queue option-use \square or \square $r{ }_{\downarrow}^{0}$ to scroll.	I NSTALL. MENU $\uparrow \downarrow$ Cancel call queue
2	Press ENER. ENER	Cancel callqueue D O N E!
3	The call queue will be cleared, and the Panel will step back to the INSTALLER MENU.	I NSTALL. MENU $\uparrow \downarrow$ Vi ew buffer

Voice functions

The OmniaVOX kit allows the installer to record, play and delete voice messages.
The Panel can memorize:
---- 2 messages of 5 seconds each
---- 2 messages of 10 seconds each
---10 messages of 4 seconds each
The recorded messages can be:
---- sent by the dialler to the programmed telephone numbers
---- assigned to the Inputs for Input-status checks via telephone
---- assigned to answer-machine function (answer-message)

that is not equipped with OmniaVOX.
Erase This operation should be done after installation of the OmniaVOX kit, and before recording the messages, as it will erase all Voice messages and will initialize the voice board memory.

To delete a specific message----follow the recording procedure, and record an empty message.

Delete all Voice messages

	From the INSTALLER MENU...		I NSTALL. MENU $\uparrow \downarrow$ Vi ew buffer
1	Select the Voice functions option-use ${ }_{9+4}^{9}$ or ${ }^{0_{\downarrow}}$ to scroll.	$\begin{gathered} 0_{\downarrow} \\ \vdots \\ 0_{\downarrow} \end{gathered}$	I NSTALL. MENU $\uparrow \downarrow$ Voi ce functions
2	Press ENEES.	ENTE	VOI CE FUNCT. $\uparrow \downarrow$ Pl ay Messages
3		${ }^{9}$	VOI CE FUNCT. $\uparrow \downarrow$ Erase messages
4	Press ENTED to delete all voice messages, and go back to step no.	ENTER	STEP BACK TO no. 2

Press $\left[\begin{array}{l}{[\mathrm{ESC}} \\ \mathrm{ExCl} \\ \text { to play or delete the recorded messages as required. }\end{array}\right.$
Play

	From the VOICE FUNCTIONS menu ...	-	VOI CE FUNCT. Pl ay Messages
1	Select the Play Messages option-use ${ }^{9}+$ or ${ }^{0}{ }_{\downarrow}$ to scroll.	-	VO CE FUNCT. Pl ay Messages
2	Press ENEES.	ENEE	VOI CE MESSAGES $\uparrow \downarrow$ Voice mess. \quad Cll
3	Select the message-use ${ }^{9}$ A or ${ }^{\text {Q }}{ }^{\text {a }}$ to scroll.	-	VOI CE MESSAGES $\uparrow \downarrow$ Voi ce mess. $\quad \varnothing 01$
4	Press ENNEA.	ENEE	Pl ay J Voi ce ness. \quad Øø
5	Press ENTE again: the voice board will play the selected message, and the display will show the message time. When the message ends the board will go back to step no. 3.	ENER	$\begin{array}{ll} \hline \text { Stop pl ay } \\ \lrcorner \text { Sec. avai I. } & \text { Øl } \\ \hline \end{array}$

+ Press ENTER to stop the message.
It is possible to play all the messages. Press $\stackrel{\left[\begin{array}{l}\text { ESC } \\ \mathrm{ECO}\end{array}\right]}{ }$ to record or delete messages as required.

The Telephone-number Programming option allows the installer to program the 32 telephone numbers in the Phonebook.

From the INSTALLER MENU ...			$\begin{aligned} & \text { I NSTALL. MENU } \end{aligned} \uparrow \downarrow$
1	Select the Tel.Numb.Progr. option-use ${ }^{9}+{ }_{\text {a }}$ or ${ }^{+\square}$ to scroll.	$\begin{gathered} 0_{\downarrow} \\ \vdots \\ 0_{\downarrow} \end{gathered}$	I NSTALL. MENU $\uparrow \downarrow$ Tel . Numb. Progr. Tel . Numb. Progr.
2	Press ENEER.	ENTE	TEL. NUMBER $\uparrow \downarrow$ Tel eph. nunb. Øø1
3		$\begin{gathered} 0_{\downarrow} \\ \vdots \\ 0_{\downarrow} \end{gathered}$	$\begin{array}{lr}\text { TEL. NUMBER } & \uparrow \downarrow \\ \text { Tel eph. numb. } & \text { CDB }\end{array}$
4	Press ENER	ENTE	Tel eph. nunb. Сஜ®
5	move the cursor on the rows. Accepted digits 0 through 9, commas (for pauses of 5 seconds), and A, B, C, *, \# for special telephone functions.	$\begin{gathered} \hline{ }_{9}^{9} \\ \vdots \\ \stackrel{B+}{\rightarrow} \end{gathered}$	Tel eph. nunb. CDB 02, 12345
6	Press ENEER to confirm the entered number and go back to step 3.	ENEAE	STEP BACK TO no. 3

Description Programming (labels)

The Descript. Progr. option allows the INSTALLER MENU to change the labels of the Zones, Partitions, Codes, Digital keys etc.

+ Labels can have up to 16 characters.

From the INSTALLER MENU ...			I NSTALL. MENU $\uparrow \downarrow$ Vi ew buffer
1	Select the Descript.Progr. option-use ${ }^{9}{ }_{4}$ or ${ }^{\sigma^{\square}}$ to scroll.	$\begin{gathered} 0_{\downarrow} \\ \vdots \\ 0_{\downarrow} \end{gathered}$	I NSTALL. MENU $\uparrow \downarrow$ Descri pt. Progr.
2	Press ENER.	ENEP	Nane order nunb. еாモ1
3	Enter the number of the label. A 5 digit number is required (e.g. 00008). Refer to the chart below for the order number. Press \square to step back to the INSTALLER MENU.		Nane order numb. CODOB
4	Press ENEES.	ENEE	Zone Cl8 Zone 908
5	The upper row will show the current label. Enter the new label in the lower row. Use \square or \square to select the characters and \square or \square to move the cursor.	$\begin{gathered} { }_{94}^{9} \\ \vdots \\ \stackrel{B \#}{\rightarrow} \end{gathered}$	Zone COB Bedr oom sensor
6	Press ENER to confirm the label and go back to step 3.	ENER	STEP BACK TO no. 3

Order numb.	Object	Order numb.	Object
$1 . .40$	Zones (40)	$139 . .170$	Codes (32)
$81 . .88$	Partitions (8)	$171 . .426$	Digital keys (256)*
$89 . .104$	Key reader (16)	$427 . .436$	Super keys (10)
$105 . .112$	Keypads (8)	$437 . .468$	Telephone numbers in the Phone- book (32)
$113 . .118$	Input expanders (6)	$469 . .504$	Outputs (36)
$129 . .136$	Output expanders (8)	$505 . .518$	Voice messages (14)
$137 . .138$	Power stations (2)		

[^0]The Installer code PIN (Personal Identification Number) can have 4, 5 or 6-digits.
Default The factory default code is 0032 .

New PIN

0	From the INSTALLER MENU ...		I NSTALL. MENU $\uparrow \downarrow$ Vi ew buffer
1	Select the Installer code option-use ${ }^{9}{ }_{4}$ or ${ }^{\mathrm{O}^{+} \text {to scroll. }}$	$\begin{gathered} 0_{\downarrow} \\ \vdots \\ 0_{\downarrow} \end{gathered}$	I NSTALL. MENU $\uparrow \downarrow$ I nstaller code
2	Press ENEEP.	ENER	Code C82 Code XXXXXX
3	Enter the New PIN (accepted digits 0 through 9). If less than 4 digits are entered, the keypad will beep and step back to the INSTALLER MENU.	6 6 7 0	Code $\mathbf{C B 2}$ Code $* * * * \mathbf{X X}$
4	Press ENEES.	ENTER	STEP BACK TO no. 0

User codes
The Installer code can program:
> the codes that will be Available to the users
> the enabled partitions of each User code
$>$ the arming mode for keys $\stackrel{\text { A* }}{\square}$ and $\xrightarrow{\text { B\# }}$
> the user-menu options, as per below.
1 Arm / Disarm partitions
2 Stop and reset Panel alarm
3 Stop and reset partition alarm
4 Bypass zones
5 View Event buffer
6 Enable / Disable the answering-machine and teleservice
7 Cancel call queue
8 Manage Outputs
> The instant actions, as per below.
1 Type A arming
2 Type B arming
3 Global arming of the partitions for an enabled User code
4 Global disarming of the partitions for an enabled User code
6 * Panel management via telephone
7 * Input reading via telephone
8 * Voice function via telephone

* These options can be programmed for User codes no. 25 through no. 31 only. User codes no. 25 through no. 31 cannot be Master codes.
> A Master code can change the PIN and status (Active/not Active) of each of its codes.
+ The installer cannot change the Available status (not Available) of an Active User code.
Refer to Keypad codes in the PROGRAMMING section for full details.

Procedure Installer parameter programming is as per below (refer also to the USER MANUAL).

	From the INSTALLER MENU ...	I NSTALL. MENU $\uparrow \downarrow$ Vi ew buffer
1		I NSTALL. MENU $\uparrow \downarrow$ User codes
2	Press ENER. ENER	Code CDI Avai l abl e $\uparrow \downarrow$
3		Code Not avai I abl e $\uparrow \downarrow$
4	Press \square to make the selected Code Available or press to make the selected Code Not available. + If the selected Code is Active it cannot be made Not Available, therefore, a beep will signal request denied.	Code Cll Avai l abl e $\uparrow \downarrow$
5	Press \square The lower row will show the Enabled Partitions (Areas enabled): - means disabled on the corresponding partition; + means enabled on the corresponding partition.	Areas enabl ed ++1+1++
6	/ disable the Code on the corresponding partition.	Ar eas enabl ed --++++
7	Press \square to view the partitions that will arm (+) and disarm (-) when the Code is entered and ${ }^{\mathrm{A} *}$ is pressed. + This arming mode will be valid only on the partitions operated by the Code in question (see steps 5 and 6).	$\begin{aligned} & \text { Arning type A } \\ & ++++ \end{aligned}$
8	Press \square to view the partitions that will arm (+) and disarm (-) when the Code is entered and \square is pressed.	Arming type B -- +---
9	Press \square to view the User menu options (Menu item enabl.) that can (+) or cannot (-) be operated by the Code in question (indicated by the - and + signs on the lower row).	
10	Press \square to view the actions that can (+) or cannot (-) be performed by the Code in question.	
11	Press \square _-then enter the identifier number of the Master code. The Master code can change the PIN and status (Active/not Active) of the Code. + Only Codes no. 1 to no. 24 can be Master Codes.	Master code eCeßer
12	Press ENER. ENER	STEP BACK TO no. 3

Digital keys can be used on the Key readers. They allow trouble-free control of the main features, such as:
> Global arming / disarming of partitions
> Partial arming / disarming of partitions
> Stop partition alarms
False key The Panel will generate a 32-binary digit (bit) random code (from over 4 billion possible combinations). The code must be copied on the memory of all the digital keys. The key code must match the code in the Panel memory---mismatch will generate a False key on key-reader event.

+ A disabled key will be considered False----even though it has a valid code.
Multiple systems As well as being able to generate a code, this Panel can also learn a code (refer to Code reading) from a digital key----programmed by another Panel (Academy40, Academy40/S, Omnia and Omnia/S). This will allow the same digital key to operate several systems (house, office, factory, etc.).
+ The code a Panel learns from the digital key will replace the previous code in the Panel memory, therefore, it must be copied on all the digital keys used on the system (refer to Enable). This is not usually a long operation, that is, if the code of a large installation (e.g. Factory) with many digital key users is copied on a smaller installation (e.g. House) with a relatively small number of digital key users, and not vice versa.

ID number As well as the code----the digital key memory also holds the Identifier number (1 through 250). This number will allow the Panel to identify the key when it operates the system. The Panel can manage up to $\mathbf{2 5 0}$ different digital keys. However, digital key 250 can be have an unlimited number of clones.

The digital key label (assigned during the programming phase) will be used---instead of its ID number---when it operates the system.

+ Multisystem keys should have the same label on all the systems they operate.
Enable on The digital keys must be enabled on the Panel partitions. Enabled digital keys can operate Global or Partial arm-
partitions ing / disarming and Stop partition alarms. The digital key partitions will be memorized by the Panel. Multi-system digital keys can be enabled on the partitions of each of the systems they operate.
+ The partitions a digital key can operate depend on the Key reader partitions. For example, if the key is enabled on partitions no. 1 and no. 2, and the Key reader is enabled on partition no. 1, the key will be able to operate partition no. 1 only.

Create code

From the INSTALLER MENU ...			I NSTALL. MENU $\uparrow \downarrow$ Vi ew buffer
1		$\begin{gathered} 0_{\downarrow} \\ : \\ 0_{\downarrow} \end{gathered}$	I NSTALL. MENU $\uparrow \downarrow$ El ectroni c keys
2	Press ENNER	ENEE	ELECTRON C KEY $\uparrow \downarrow$ Program
3	Select the New random code option-use ${ }^{9}{ }_{4}$ or ${ }^{0_{\downarrow}}$ to scroll.	$\begin{aligned} & 0_{\downarrow} \\ & 0_{\downarrow} \end{aligned}$	ELECTRON C KEY $\uparrow \downarrow$ New random code
4	Press ENER2.	ENTE	STEP BACK TO no. 3

+ The digital keys of a Panel that generates a New random code will automatically be disabled (false) on the Pane in question. However, they will not be disabled on other Panels that have learnt their code (refer to Code reading).

	From the INSTALLER MENU ...	I NSTALL. MENU $\uparrow \downarrow$ Vi ew buffer
1	Select the Electronic keys option-use ${ }^{9}$ or \square \square to scroll.	I NSTALL. MENU $\uparrow \downarrow$ El ectroni c keys
2	$\text { Press } \operatorname{ANTED} .$	ELECTRON C KEY $\uparrow \downarrow$ Program
3	Press \square again. Select the digital key (Electr key)—use to scroll.	PROGRAMM NG $\uparrow \downarrow$ El ectr Key COR
4	Press \square to view the partitions the digital key can (+) and cannot (-) operate.	Areas enabl ed +1+1+1+
5	digital keys on the corresponding partition.	Areas enabl ed +++-++
6	Press सNER then enter the identifier number of the Key reader.	Use Key reader COCO2
7	Press \square The display will show the digital key number (Electr key). Insert the digital key into the Key reader-shown on the display. The three LEDs on the Key reader will glow to indicate Programming OK, or will Flash to indicate Programming error.	El ectr key $C 02$ Key reader $C 02$

Repeat step no. 7 to enable other digital keys on the partitions specified in step no. 5.
The upper row will show the digital key, and the lower row will show the Key reader to use.
Press $\frac{\text { EECC }}{\text { ExCl }}$ to step back to the step no. 3.

+ To change the enabled partitions of a digital key----follow the Programming procedure to step no. 5 then press $\frac{[\text { ECC }}{\mathrm{EXCC}}$.

Code reading The following procedure will copy the digital key code onto the memory of an Academy 40 or Omnia Panel (Academy40, Academy40/S, Omnia and Omnia/S).

From the INSTALLER MENU ...			I NSTALL. MENU $\uparrow \downarrow$ Vi ew buffer
1		$\begin{gathered} \hline 0_{v} \\ : \\ O_{i} \end{gathered}$	I NSTALL. MENU $\uparrow \downarrow$ El ectroni c keys
2		ENER	```ELECTRON C KEY \\downarrow Program```
3	Select the Read code option-use ${ }^{9} 4$ or ${ }^{0}+{ }_{\downarrow}$ to scroll.	${ }^{9}+$	ELECTRON C KEY $\uparrow \downarrow$ Read code
4	Press \square then enter the identifier number of the Key reader to be used for the Digital-key code transfer.		Use Key reader COED2
5	Press \square then put the Digital Key in the Key reader shown on the display.	ENiER	STEP BACK TO no. 3

The code a Panel learns from the digital key will replace the previous code in the Panel memory, therefore, it must be copied on all the digital keys used on the system, as per the following paragraph.

- Enable

The digital keys can be enabled / disabled individually. Therefore, a lost key can simply be disabled---it will not be necessary to generate a new code, or reprogram all the other digital keys. The Panel will generate a False key on key reader event if a disabled digital key is used at a Key reader, even though its code is still valid.

Procedure Enable or disable digital keys, as per below.

+ A digital key can be enabled / disabled by the Installer only----without authorization from the key user, and need not be in the key reader during the enable / disable operation.

The INSTALLER MENU allows the installer to program all the Panel parameters (refer to PROGRAMMING).
Parameter programming, due to its complexity, is dealt with separately in the PARAMETER PROGRAMMING section.

Firmware release

This option will allow the installer to view the Panel firmware release.

From the INSTALLER MENU ...			$\begin{aligned} & \hline \text { I NSTALL. MENU } \uparrow \downarrow \\ & \text { Vi ew buffer } \end{aligned}$
1	Select the Revision option-use ${ }^{9}+{ }_{\text {a }}$ or ${ }^{0+}$ to scroll.	$\begin{gathered} 0_{\downarrow} \\ \vdots \\ 0_{\downarrow} \end{gathered}$	\qquad Revi si on
2	Press ENEEA.	ENEE	BENTEL- ACADEMY Rev. 3. el
3	Press any key to step back to the INSTALLER MENU.	${ }_{\text {E }}^{\text {ESCC }}$	$\text { I NSTALL. MENU } \uparrow \downarrow$ Vi ew buffer

Please read the following instructions carefully, as proper functioning of the Panel depends on the Parameters programmed during this phase. Refer to the PROGRAMMING section in the INSTALLATION MANUAL for further details.

General rules for programming from Keypad

There are 81 Data Blocks----each Block represents the parameters of a specific function.
Start the programming phase----the display will show:
Parameter number
ØØØØ1
The Panel will request a parameter or Block of parameters.

- Enter the Block number (e.g. 00025) the display will show:

Ø25 ØØØØ5 ØØØØ1
ØØØØØ
From left to right, the upper row of this display will show:
$>$ the Block number (025)
$>$ the number of options in the selected Block (00005)
$>$ the option number (00001).
The Value must be entered on the lower row.
Flags8 Each parameter has a series of either 8 or 16 Flags. A flag is either a $\boldsymbol{+}$ or sign.
Flags16

+ means----Yes, Present, Active, Available
- means----No, Not Present, Not Active, Not Available

For example parameter 2 (Key readers in configuration) is a Flags8 type, as follows:
ØØ2 ØØØØ1 ØØØØ1
+------- = 8 flags
 enter + or $\frac{\text { Off }}{\frac{\text { RES }}{R E}}$ to enter --
Press ENeR to save the parameter and step to the next parameter (if present), or step back to the Select Block phase.

Number A Number parameter is a 5 digit value. For example, parameter 11 (Zone Cycles), as follows:

Ø11 ØØØ8Ø ØØØØ1 ØØ255

The accepted value varies for each parameter.
Number parameters require 5 digits. Press ENER to save, and step to the next parameter (if present).

Logic A Logic parameter has a value of $\mathbf{0}$ or 1. For example, parameter 30 (Jump other answering devices), as follows:
Ø30 ØØØØ1 ØØØØ1 ØØØØØ

This type of parameter applies to Yes / No options.
Accepted values are 00000 or 00001, and mean:
00000 = No, Not Active
00001 = Yes, Active

+ Other values (00002 through 59999) will be rectified to 00001.
Logic parameters require 5 digits. Press ${ }^{\text {ENNER }}$ to save and exit.

Key readers in Configuration

Block no.	$\mathbf{0 0 0 0 1}$
Length	$\mathbf{0 0 0 0 1}$
Type	Fl ags16

The flag spaces on the bottom row correspond to Addresses 1 through 16 (from left to right).
To assign a key reader to an address:

Example

Keypads in Configuration

Block no.	$\mathbf{0 0 0 0 2}$
Length	$\mathbf{0 0 0 0 1}$
Type	FI ags8

The flag spaces on the bottom row correspond to Addresses 1 through 8 (from left to right).
To assign a keypad to an address:

Example

Input expanders in Configuration

Block no.	$\mathbf{0 0 0 0 3}$
Length	$\mathbf{0 0 0 0 1}$
Type	Fl ags16

The flag spaces on the bottom row correspond to Addresses 1 through 16 (from left to right).
To assign an Input expander to an address:

Example

$\begin{aligned} & \text { OOB CODØ1 COCDI } \\ & +1+1-----1 \end{aligned}$	The Input expanders are assigned to addresses 1, 2, 3, 4, and

Block no.	$\mathbf{0 0 0 0 4}$
Length	$\mathbf{0 0 0 0 1}$
Type	Fl ags8

The flag spaces on the bottom row correspond to Addresses 1 through 8 (from left to right).
To assign an Output expander to an address:

Example

| QO4 CODOI CODDI |
| :--- | :--- | :--- |
| +---+ | The Output expanders are assigned to addresses 1 and 7.

Power stations

Block no.	$\mathbf{0 0 0 0 5}$
Length	$\mathbf{0 0 0 0 1}$
Type	FI ags8

The flag spaces on the bottom row correspond to Addresses 1 through 8 (from left to right).
To assign a Power station to an address:

+ Only Addresses 1 and 2 are available for Power stations.
Example

Enable Keypad Partitions

Block no.	$\mathbf{0 0 0 0 6}$
Length	$\mathbf{0 0 0 0 8}$
Type	Fl ags8

Enable the Keypads on the various Partitions.

+ The Panel will ignore any Keypad that is not in the configuration (assigned to an address).

Example

Enable Key reader Partitions and Masks

Block no.	$\mathbf{0 0 0 0 7}$
Length	$\mathbf{0 0 0 4 8}$
Type	Fl ags8

Key readers must be:
> enabled on Partitions
> assigned to an arming type----associated with the Amber LED
> assigned to an arming type associated with the Green LED
Up to 16 Blocks (for up to 16 key readers) of 3 options can be programmed.

+ The Panel will ignore any Key reader that is not in the configuration (assigned to an address).

Example

$\begin{aligned} & 087 \text { Qa848 } \\ & H+H+ \end{aligned}$	90001
08700848	90808
00700848	90188

The Key reader at address 1 is enabled on all Partitions.
The type of arming associated with the Amber LED will arm Partitions no. 1, 2 and 3 and disarm all other Partitions.

The type of arming associated with the Green LED will arm Partitions no. 3, 4 and 5 and disarm all others.

Block no.	$\mathbf{0 0 0 0 8}$
Length	$\mathbf{0 0 0 8 0}$
Type	Fl ags8

Program the Balancing and Sensitivity for each Zone.
For Standard Sensitivity----program as follows:

1	2	3	4	5	6	7	8
Within		Pulses		-	Balancing		

For Low Sensitivity----program as follows:

1	2	3	4	5	6	7	8
Pulse length			+	Balancing			

The Within, Pulses and Balancing parameters are codified as follows:

7	8	BALANCING
-	-	Normally open
+	-	Double balanced
-	+	Balanced
+	+	Normally closed
4	5	PULSES
-	-	1 pulse
+	-	1 pulse
-	+	2 pulses
+	+	3 pulses

1	2	3	WITHIN
-	-	-	4 seconds
+	-	-	8 seconds
-	+	-	12 seconds
+	+	-	16 seconds
-	-	+	20 seconds
+	-	+	24 seconds
-	+	+	28 seconds
+	+	+	32 seconds

Pulse length The flag spaces in the Pulse length parameter have binary values, as follows:
---first flag space $=1$---second flag space $=\mathbf{2}-$--third flag space $=4 \cdots$--fourth flag space $=8$---fifth flag space $=16$
How to calculate the Pulse length

- Choose the Pulse length in steps of 30 seconds (30 through 960 as per requirements).
- Divide the Pulse length value by 30 then take away 1 from the result (refer to the Examples and table below).
- Enter + (press $\left.\frac{\stackrel{\circ}{\mathrm{ROG}})}{\mathrm{RG}}\right)$ in the flag spaces that sum the resultant number.
+ Press $\frac{\frac{O+f f}{R E S}}{R_{S}}(-)$ to zero a value or to deselect.

Examples

Pulse length $=\mathbf{3 0}$ seconds $\div \mathbf{3 0} \mathbf{= 1 \mathbf { 1 } \mathbf { - 1 } \mathbf { = 0 }} \mathbf{0}$ therefore, enter "--" in all $\mathbf{5}$ flag spaces, see table.

The numbers (1 through 5) on the top row of the table below indicate the flag spaces and not the binary values.

1	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	PULSE LENGTH
-	-	-	-	-	30 seconds
+	-	-	-	-	60 seconds
-	+	-	+	-	$:$
+	+	+	+	+	330 seconds

Note This Panel manages a maximum of 40 zones, therefore, parameters no. 41 through no. 80 are irrelevant.

Example

Zone Type

Block no.	$\mathbf{0 0 0 0 9}$
Length	$\mathbf{0 0 0 8 0}$
Type	Fl ags8

Select the Type for each Zone.
The selected Type----Alarm or Command---will determine the operating mode of the Zone.

- For Alarm Zones---enter - (press $\frac{\stackrel{\circ}{\mathrm{RFF}}}{\mathrm{Res}}$) in position 8, and enter + (press $\left.\frac{\mathrm{OV}}{\mathrm{RRG}}\right)$ in the flag space of the required operating mode.

1	2	3	4	5	6	7	8
Entry delay	Entry path	Exit delay	Last exit zone	24 h	Fire		-

Please note the following programming restrictions:
> If Fire is selected----no other operating mode can be selected.
> If $\mathbf{2 4 h}$ is selected----no other operating mode can be selected.
> If the Zone is neither 24h nor Fire---more than one of the 4 remaining Types can be selected.

+ The Zone will be considered Instant---if no + signs are present.

1	2	3	4	5	6	7	8
Arm Disarm	Only arm	Only disarm	Partition reset	Panel reset	Clear calls		+

+ If more than one + sign is entered (to select the command)----only the first to the right will be considered.
Note This Panel manages a maximum of 40 zones, therefore, parameters no. 41 through no. 80 are irrelevant.

Example

969 C1080 12002
 $++---$

Zone no. 2 is programmed as: Alarm Zone, Entry delay, Exit delay.

Zone Attributes

Block no.	$\mathbf{0 0 0 1 0}$
Length	$\mathbf{0 0 0 8 0}$
Type	Fl ags8

Assign the Attributes to each Zone.

1	2	3	4	5	6	7	8
Not Bypassable	Chime	Test	Autobypassable				

+ These Attributes do not apply to Command Zones.
Note This Panel manages a maximum of 40 zones, therefore, parameters no. 41 through no. 80 are irrelevant.

Example

Block no.	$\mathbf{0 0 0 1 1}$
Length	$\mathbf{0 0 0 8 0}$
Type	Number
Validity	$\mathbf{0 .} .255$

Program the number of times a Zone can signal alarm before being bypassed.
Enter $\mathbf{2 5 5}$ for Repetitive Zones.
Note This Panel manages a maximum of 40 zones, therefore, parameters no. 41 through no. 80 are irrelevant.

Example

011 90080		Zone no. 1 can generate 5 cycles (maximum)

Zone Partitions

Block no.	$\mathbf{0 0 0 1 2}$
Length	$\mathbf{0 0 0 8 0}$
Type	Fl ags8

Assign the Zones to the Partitions.

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	ASSIGN.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	ASSIGN.
-	-	-	-	-	-	-	-	Partition no. 1	-	-	$\mathbf{+}$	$\mathbf{-}$	$\mathbf{-}$	-	-	-	Partition no. 5
$\mathbf{+}$	-	-	-	-	-	-	-	Partition no. 2	$\mathbf{+}$	-	$\mathbf{+}$	-	-	-	-	-	Partition no. 6
-	$\mathbf{+}$	-	-	-	-	-	-	Partition no. 3	-	$\mathbf{+}$	$\mathbf{+}$	-	-	-	-	-	Partition no. 7
$\mathbf{+}$	$\mathbf{+}$	-	-	-	-	-	-	Partition no. 4	$\mathbf{+}$	$\mathbf{+}$	$\mathbf{+}$	-	-	-	-	-	Partition no. 8

Note This Panel manages a maximum of 40 zones, therefore, parameters no. 41 through no. 80 are irrelevant.
Example

Zone status Voice messages

Block no.	$\mathbf{0 0 0 1 3}$
Length	$\mathbf{0 0 1 6 0}$
Type	Number
Validity	$\mathbf{0 . ~ . 1 4 ~}$

Enter 2 values----for each Zone----as follows.

- Value 1: enter the Identifier no. of the Voice message for Standby status.

Enter $\mathbf{0}$ for no message.

- Value 2: enter the Identifier no. of the Voice message for Alarm status.

Enter $\mathbf{0}$ for no message.
Note This Panel manages a maximum of 40 zones, therefore, parameters no. 82 through no. 160 are irrelevant.

Example

Zone no. 1 has Voice message no. 3----for Standby status, and Voice message no. 4---for Alarm status.

Block no.	$\mathbf{0 0 0 1 4}$
Length	$\mathbf{0 0 0 0 1}$
Type	Number
Validity	$\mathbf{0 .} .255$

Program the Off time (pause) between alarm cycles---generated by Monostable Outputs, as follows.
Off time---0 through 127.5 seconds in steps of 0.5 seconds.

- Enter the Off time (as per requirements) multiplied by 2.

Therefore, if the Off time is 5 seconds----enter 10.
Accepted values: 0 through 256.

Example

Output Type

Block no.	$\mathbf{0 0 0 1 5}$
Length	$\mathbf{0 0 0 3 6}$
Type	Logi c

Program the Bistable or Monostable operating mode of the Output:

- Enter 1 for Monostable

Enter $\mathbf{0}$ for Bistable
Example

015 COEB6	COZOER	Output no. 2 is programmed as Monostable.

Reserved (for manual commands)

Block no.	$\mathbf{0 0 0 1 6}$
Length	$\mathbf{0 0 0 3 6}$
Type	Logi c

The Outputs can be Reserved for manual commands.

- Enter 1 for Reserved status.

Enter $\mathbf{0}$ to allow the Output to be activated by events.
Example

How to program Main Unit Outputs (Block no. 17)

Block no.	$\mathbf{0 0 0 1 7}$
Length	$\mathbf{0 0 0 0 5}$
Type	Nunber

Enter 5 values for each of the four Main Unit Outputs.

- Value 1: enter the accumulative significance of the Attributes of the four Outputs----Normally open or Normally closed (refer to Attributes).
- Value 2: enter the On time value for Output no. 1 (refer to On time).
- Value 3: enter the On time value for Output no. 2.
- Value 4: enter the On time value for Output no. 3.
- Value 5: enter the On time value for Output no. 4.

```
Attributes Calculate the accumulative significance for Value 1 as follows.
            The significance of a Normally Open Output is 0, therefore:
            Enter 0}\mathrm{ to program all four Outputs as Normally open.
            The significance of a Normally Closed Output depends on the Output, as follows:
            Output no. 1 = significance 1
            Output no. 2 = significance 2
            Output no. 3 = significance 4
            Output no. 4 = significance }
Example Output 1 Normally Open (Significance 0)
            Output 2 Normally Open (Significance 0)
            Output 3 Normally Closed (Significance 4)
            Output 4 Normally Closed (Significance 8), therefore, enter }12
    On time Calculate the On time value for the Outputs as follows:
    Short On time---0 through 25.4 seconds in steps of 0.2 seconds.
            - Enter the On time (as per requirements) multiplied by 5.
            Therefore, if the On time is }10\mathrm{ seconds----enter 50 (10 * 5 = 50).
            Accepted values: 0 through 127.
            L Long On time---0 through 128 minutes in steps of 1 minute.
            - Enter the On time (as per requirements) plus 127.
            Therefore, if the On time value is 10 minutes----enter 137 (10 + 127=137).
            Accepted values: }128\mathrm{ through }25
            + The On time can be programmed for Monostable Outputs only.
```

 Example
 | 017 | CODO5 | |
| :---: | :---: | :---: |
| 017 | 90065 | $\begin{aligned} & \hline \text { बəصər } \\ & \varnothing \varnothing 13 \varnothing \end{aligned}$ |
| 017 | С1805 | $\begin{aligned} & \hline 0008 \\ & \varnothing 013 \varnothing \end{aligned}$ |
| 017 | CaCD5 | |
| 017 | CaCD5 | |

| $\|$Outputs no. 1 and 2 are programmed as Normally closed and Outputs no. 3 and 4 as
 Normally open. |
| :--- | :--- |
| 3 minutes On time for Output no. 1 |
| 3 minutes On time for Output no. 2 |
| 5 seconds On time for Output no. 3 |
| 5 seconds On time for Output no. 4 |

How to program Expander no. 1 Outputs

Block no.	00018
Length	$\mathbf{0 0 0 0 5}$
Type	Number

Program the 4 Outputs as per Block no. 17.
How to program Expander no. 2 Outputs

Block no.	$\mathbf{0 0 0 1 9}$
Length	$\mathbf{0 0 0 0 5}$
Type	Number

Program the 4 Outputs as per Block no. 17.
How to program Expander no. 3 Outputs

Block no.	$\mathbf{0 0 0 2 0}$
Length	$\mathbf{0 0 0 0 5}$
Type	Number

Program the 4 Outputs as per Block no. 17.
How to program Expander no. 4 Outputs

Block no.	00021
Length	00005
Type	Number

Program the 4 Outputs as per Block no. 17.

Block no.	$\mathbf{0 0 0 2 2}$
Length	$\mathbf{0 0 0 0 5}$
Type	Number

Program the 4 Outputs as per Block no. 17.
How to program Expander no. 6 Outputs

Block no.	$\mathbf{0 0 0 2 3}$
Length	$\mathbf{0 0 0 0 5}$
Type	Number

Program the 4 Outputs as per Block no. 17.
How to program Expander no. 7 Outputs

Block no.	$\mathbf{0 0 0 2 4}$
Length	$\mathbf{0 0 0 0 5}$
Type	Number

Program the 4 Outputs as per Block no. 17.
How to program Expander no. 8 Outputs

Block no.	00025
Length	$\mathbf{0 0 0 0 5}$
Type	Number

Program the 4 Outputs as per Block no. 17.
Partition Entry time

Block no.	00026
Length	$\mathbf{0 0 0 0 8}$
Type	Number

- Enter the Entry time value of each of the 8 Partitions, as follows.

Entry time---up to 60 minutes (as per requirements).

How to calculate the Entry time value:
----divide the Entry time (in seconds) by 1.2.
Example

026 90008		Partition no. 1 is has a 30 second Entry time ($30 \div 1.2=25$).

Exit time

Block no.	$\mathbf{0 0 0 2 7}$
Length	$\mathbf{0 0 0 0 8}$
Type	Nunber

- Enter the Exit time value for each of the 8 Partitions, as follows:
> Exit time---up to 60 minutes (as per requirements).

How to calculate the Exit time value:
----divide the Exit time (in seconds) by 1.2.
Example

027 C1008		Partition no. 3 is has a 60 second Exit time $(60 \div 1.2=50)$.

Block no.	$\mathbf{0 0 0 2 8}$
Length	$\mathbf{0 0 0 0 8}$
Type	Number

- Enter the Last Exit time value for each of the 8 Partitions, as follows:
> Last exit time----up to 60 minutes (as per requirements).
How to calculate the Last Exit time value:
----divide the Last Exit time (in seconds) by 1.2.
Example

028 COEOB COEOR		Partition no. 2 is has a 6 second Last Exit time $(6 \div 1.2=5)$.

Primary and Subordinate Partitions (Depends on)

Block no.	$\mathbf{0 0 0 2 9}$
Length	$\mathbf{0 0 0 0 8}$
Type	Fl ags8

Create a Primary and Subordinate Partition structure. The Subordinate Partitions Depend on their Primary Partitions.

- Enter + (press $\stackrel{\left.\frac{O N}{\frac{O N}{P R G}}\right)}{ }$ in the flag spaces of the Partitions that will have Primary status.

Example

Partitions no. 1 and no. 2 do not Depend on other Partitions. However, Partition no. 3 Depends on Partitions no. 1 and no. 2.

Jump other answering devices

Block no.	$\mathbf{0 0 0 3 0}$
Length	$\mathbf{0 0 0 0 1}$
Type	Logi c

If this option is enabled the Panel will override other answering devices on the same telephone line.

- Enter 1----to enable the option

Enter 0----to disable the option

Example

Rings

Block no.	00031
Length	$\mathbf{0 0 0 0 1}$
Type	Number

- Enter the number of rings allowed (1 through 10) before answering.
+ This parameter will be ignored if Jump other answering devices is enabled.

Example

Block no.	$\mathbf{0 0 0 3 2}$
Length	$\mathbf{0 0 0 0 2}$
Type	Logi c

Enter the 2 logic values as follows.
Value 1: Disable / Enable the Tone Check:

- Enter 1----to disable the option
- Enter 0----to enable the option

Value 2: Select dialling mode (DTMF or Pulse).

- Enter $\mathbf{0}$ for DTMF
- Enter 1 for Pulse

Example

Answerphone message

Block no.	$\mathbf{0 0 0 3 3}$
Length	$\mathbf{0 0 0 0 1}$
Type	Number
Validity	$\mathbf{0 . ~ . ~ 1 4 ~}$

Assign one of the 14 messages to the answering device.

- Enter the Voice message number (1 through 14).

0 means no message.
Example

Digital Communicator Attempts

Block no.	$\mathbf{0 0 0 3 4}$
Length	$\mathbf{0 0 0 0 1}$
Type	Number
Validity	$\mathbf{0 .} .255$

- Enter the number of Attempts the Panel must make for unsuccessful Digital Communicator calls----before clearing the call from the Call queue

Example

Number to dial, Customer code and Protocol

Block no.	00035
Length	$\mathbf{0 0 0 2 4}$
Type	Number

Enter 6 values----for each of the 4 Digital Communicator telephone numbers, as follows.

- Value 1: enter the identifier no. of the Central Station telephone number ----from the 32 telephone numbers in the phonebook.
- Value 2: enter the first digit of the Customer code.

Value 3: enter the second digit of the Customer code.
Value 4: enter the third digit of the Customer code.
Value 5: enter the fourth digit of the Customer code.

+ Enter 10 for 0 .

Enter hexadecimal characters as follows:
11 = B
$12=\mathbf{C}$
$13=\mathrm{D}$
$14=\mathbf{E}$
$15=F$

- Value 6: enter the Communication Protocol----as per the following table.

PROTOCOL	VALUE
ADEMCO/SILENT KNIGHT - Slow 10 baud	$\mathbf{0 0 0 0 0}$
ADEMCO/SILENT KNIGHT - Fast 20 baud	$\mathbf{0 0 0 0 1}$
FRANKLIN/SECOA/DCI/VERTEX - Fast 20 baud	$\mathbf{0 0 0 0 2}$
RADIONICS - 40 baud	$\mathbf{0 0 0 0 3}$
SCANTRONIC -10 baud	$\mathbf{0 0 0 0 4}$
Customized	$\mathbf{0 0 0 0 5}$
Contact ID	$\mathbf{0 0 0 0 6}$
ADEMCO/SILENT KNIGHT - Slow 10 baud + Voice	$\mathbf{0 0 1 2 8}$
ADEMCO/SILENT KNIGHT - Fast 20 baud + Voice	$\mathbf{0 0 1 2 9}$
FRANKLIN/SECOA/DCI/VERTEX - Fast 20 baud + Voice	$\mathbf{0 0 1 3 0}$
RADIONICS - 40 baud + Voice	$\mathbf{0 0 1 3 1}$
SCANTRONIC - 10 baud + Voice	$\mathbf{0 0 1 3 2}$
Contact ID + Voice	$\mathbf{0 0 1 3 3}$
Customized + Voice	$\mathbf{0 0 1 3 4}$

Example Program the Number to dial, Customer code and Protocol of the first Central Station the Digital communicator will transmit to.

Number to dial: Telephone number no. 16
Customer code: 205B

Protocol: Scantronic 10 baud

Definition of Digital Communicator Actions 1 though 32

Block no.	$\mathbf{0 0 0 3 6}$
Length	$\mathbf{0 0 1 9 2}$
Type	Number

Enter 3 values---for sub-actions A and B----for each of the 32 Digital Communicator Actions, as follows.

- Value 1: enter the first digit of the Event code.

Value 2: enter the second digit of the Event code.

+ Enter 10 for $\mathbf{0}$ for all protocols except Contact ID.
Enter hexadecimal characters as follows:
11 = B
$12=\mathbf{C}$
13 = D
$14=\mathbf{E}$
$15=F$
Value 3: enter the telephone numbers to be called.
Enter the total significance of the telephone numbers----calculate as follows:
Telephone number no. 1 = significance 1
Telephone number no. 2 = significance 2
Telephone number no. $3=$ significance 4
Telephone number no. 4 = significance 8
Therefore, enter 15 ($1+2+4+8=15$ total) to call all 4 telephone numbers.
To call all telephone numbers----even successful calls----add 128 to the sum of the significance of each telephone number (refer to Sub-action B in the example).

Example

036	00192	
036	00192	
036	00192	

036 Cø192	
036 Cø192	
036 Cø192	$\begin{aligned} & \text { Qago6 } \\ & 90131 \end{aligned}$

Sub-action A
The values shown here are for Event code 20

Telephone numbers no. 1 and no. 2 will be called.
Recall on success (All option): NO

```
Sub-action B
```

The values correspond to Event code 21

Telephone numbers no. 1 and no. 2 will be called.
Recall on success (All option): YES $(1+2+128=131)$

Definition of Digital Communicator Actions 33 through 64

Block no.	$\mathbf{0 0 0 3 7}$
Length	$\mathbf{0 0 1 9 2}$
Type	Number

As per Block 00036 for actions no. 33 through no. 64.
Definition of Digital Communicator Actions 65 through 96

Block no.	$\mathbf{0 0 0 3 8}$
Length	$\mathbf{0 0 1 9 2}$
Type	Number

As per Block 00036 for actions no. 65 through no. 96.
Definition of Digital Communicator Actions 97 through 128

Block no.	$\mathbf{0 0 0 3 9}$
Length	$\mathbf{0 0 1 9 2}$
Type	Number

As per Block 00036 for actions no. 97 through no. 128.
Definition of Digital Communicator Actions 129 through 160

Block no.	$\mathbf{0 0 0 4 0}$
Length	$\mathbf{0 0 1 9 2}$
Type	Number

As per Block 00036 for actions no. 129 through no. 160.
Definition of Digital Communicator Actions 161 through 192

Block no.	$\mathbf{0 0 0 4 1}$
Length	$\mathbf{0 0 1 9 2}$
Type	Number

As per Block 00036 for actions no. 161 through no.192.
Definition of Digital Communicator Actions 193 through 224

Block no.	$\mathbf{0 0 0 4 2}$
Length	$\mathbf{0 0 1 9 2}$
Type	Number

As per Block 00036 for actions no. 193 through no. 224.
Definition of Digital Communicator Actions 225 through 250

Block no.	$\mathbf{0 0 0 4 3}$
Length	$\mathbf{0 0 1 5 6}$
Type	Number

As per Block 00036 for actions no. 225 through no. 250. The Block length is 156 and not 192, as only 26 actions can be programmed.

Block no.	$\mathbf{0 0 0 4 4}$
Length	$\mathbf{0 0 0 0 1}$
Type	Number
Validity	$\mathbf{0 . . 2 5 5}$

- Enter the number of Attempts the Dialler must make----before clearing an unsuccessful call from the call queue.

Example

044 CODO1 CODO1

Recall on success

Block no.	$\mathbf{0 0 0 4 5}$
Length	$\mathbf{0 0 0 0 1}$
Type	Logi c

- Enter 1----to call all telephone numbers----successful calls included----for the programmed number of Attempts.

Example

Repetition time and Dialler Telephone numbers

Block no.	$\mathbf{0 0 0 4 6}$
Length	$\mathbf{0 0 0 4 8}$
Type	Number

Enter 3 Values for each Dialler number as follows.
Value 1: enter the second integer of the Repetition time calculation.
Value 2: enter the first integer of the Repetition time calculation.
Value 3: enter the telephone identifier no. (see footnote).

+ The Repetition time (up to 90 seconds) determines the length of the Dialler call (maximum 90 seconds). The assigned message will be repeated continuously until the call ends.

How to calculate the Repetition time value:

---multiply the chosen Repetition time by 0.13.
The result will be an integer (whole number) and a decimal fraction.
Enter the resulting integer for Value 2.
----multiply the resulting decimal fraction by 256.
Enter the resulting integer for Value 1.
Example Chosen Repetition time $=90$ seconds:
----multiply 90 by $0.13:(90$ * $0.13=11.7)$ then
----multiply the decimal fraction by $256(0.7 \times 256=179.2$ rectified to $\mathbf{1 7 9})$.
Value 1 = 179
Value 2 = 11
Value 3 = Identifier no. 0 (corresponds to identifier no. 1 in the Phonebook).

The message will be repeated continuously for 90 seconds.

The Dialler will call the first number in the Panel Phonebook Identifier no. 1 (see footnote).

+ Up to 16 of the 32 telephone numbers in the Panel phonebook can be assigned to the dialler. However, the telephone number Identifier numbers in this parameter start from 0 and not from 1 ---as in the phonebook. Therefore, each telephone number identifier must step back 1 (e.g. Identifier 32 in the Phonebook corresponds to Identifier 31 for the Dialler, etc.).

Block no.	$\mathbf{0 0 0 4 7}$
Length	$\mathbf{0 0 0 9 6}$
Type	Fl ags8

Enter 3 Values for each of the 32 Dialler actions as follows.
Each Dialler action will send one of the 14 Voice Messages to up to 16 telephone numbers (from the 32 telephone numbers in the Phonebook). Dialler actions will be repeated as per the programmed number of Attempts.

- Value 1: Dialler numbers to be called (1 through 8).

- Value 2: Dialler numbers to be called (9 through 16).

Enter + (press $\left.\frac{\mathrm{ON}}{\mathrm{RRGG}}\right)$ in the flag spaces of the numbers to be called.
The first flag corresponds to Dialler number 9 , the second to Dialler number 10, etc.

- Value 3: assign the message (see the table below):

MESSAGE	1	2	3	4	5	6	7	8	MESSAGE	1	2	3	4	5	6	7	8
no. 1	+	-	-	-	-	-	-	-	no. 8	-	-	-	+	-	-	-	-
no. 2	--	+	-	-	-	-	-	-	no. 9	+	-	-	+	-	-	-	-
no. 3	+	+	-	-	-	-	-	-	no. 10	-	+	-	+	-	-	-	-
no. 4	-	-	+	-	-	-	-	-	no. 11	+	+	-	+	-	-	-	-
no. 5	+	-	+	-	-	-	-	-	no. 12	-	-	+	+	-	-	-	-
no. 6	-	+	+	-	-	-	-	-	no. 13	+	-	+	+	-	-	-	-
no. 7	+	+	+	-	-	-	-	-	no. 14	-	+	+	+	-	-	-	-

Example

	Voice message no. 1 is assigned to Dialler numbers no. 1, 2, 3 and 4.
04790096 90206	
$047 \text { वOD96 वृCD6 }$	

Callback and Test call

Block no.	$\mathbf{0 0 0 4 8}$
Length	$\mathbf{0 0 0 0 2}$
Type	Logi c

Enter 2 Values as follows.

- Value 1: Enable / Disable Callback:

Enter 1----to enable the option
Enter 0----to disable the option

- Value 2: Enable / Disable Test call:

Enter 1----to enable the option
Enter 0----to disable the option
> If Callback is enabled the Panel will call the station immediately after receiving a Teleservice call.
> If the Test Call is enabled the Panel will send a Test Call when the Test event occurs.

Example

Callback enabled

Test call disabled

Teleservice Call Attempts

Block no.	$\mathbf{0 0 0 4 9}$
Length	$\mathbf{0 0 0 0 1}$
Type	Number
Validity	$\mathbf{0 .}$. 255

- Enter the number of Attempts the Panel must make for an unsuccessful Teleservice call----before clearing the call from the Call queue.

Enable Teleservice numbers

Block no.	$\mathbf{0 0 0 5 0}$
Length	$\mathbf{0 0 0 0 1}$
Type	Fl ags8

Enable / Disable Teleservice numbers.

- Enter + (press $\underset{\mathrm{PRG}}{\stackrel{\mathrm{OR}}{\mathrm{RG}}})$ in the flag space to enable the Teleservice number.

Example

Teleservice numbers

Block no.	$\mathbf{0 0 0 5 1}$
Length	$\mathbf{0 0 0 0 4}$
Type	Number
Validity	$\mathbf{0 . ~ . ~ 3 1 ~}$

Assign 4 of the 32 Telephone numbers from the Panel Phonebook to Teleservice.
Example

Teleservice Customer code

Block no.	00052
Length	$\mathbf{0 0 0 0 4}$
Type	Number
Validity	$\mathbf{0 . ~ . ~} 9$

- Enter the 4 figure Customer code for Teleservice.

Example

052 Ø1004	$\begin{aligned} & \text { Qader } \\ & \text { CODO9 } \end{aligned}$	9105 is the Teleservice Customer code.
052 Ø1004		
052 व1004	Qaner	
052 Ø1204	$\begin{aligned} & \hline \text { Qapra } \\ & \text { صøDO5 } \end{aligned}$	

Output actions for Zone alarms

Block no.	$\mathbf{0 0 0 5 3}$
Length	$\mathbf{0 0 0 8 0}$
Type	Number
Validity	$\mathbf{0 . ~ . ~ 3 6 ~}$

- Enter the identifier no. of the Output that will be activated by the Alarm on zone event.

Enter $\mathbf{0}$ for no Output.
Note This Panel manages a maximum of 40 zones, therefore, parameters no. 41 through no. 80 are irrelevant.

Example

Alarm on zone 08 will activate Output no. 4.

Output actions for Tamper on zone

Block no.	$\mathbf{0 0 0 5 4}$
Length	$\mathbf{0 0 0 8 0}$
Type	Number
Validity	$\mathbf{0 . ~ . ~ 3 6 ~}$

- Enter the identifier no. of the Output that will be activated by the Tamper on zone event. Enter $\mathbf{0}$ for no Output.

Note This Panel manages a maximum of 40 zones, therefore, parameters no. 41 through no. 80 are irrelevant.

Example

General events-Part 1

Block no.	$\mathbf{0 0 0 5 5}$
Length	$\mathbf{0 0 1 1 2}$
Type	Number
Validity	$\mathbf{0 . ~ . ~ 3 6 ~}$

- Enter the identifier no. of the Output that will be activated by the Event (refer to General events-Part 1).

Enter $\mathbf{0}$ for no Output.
Example

General events-Part 2

Block no.	$\mathbf{0 0 0 5 6}$
Length	$\mathbf{0 0 1 0 7}$
Type	Number
Validity	$\mathbf{0 . ~ . ~ 3 6 ~}$

Enter the identifier no. of the Output that will be activated by the Event (refer to General events-Part 2).
Enter $\mathbf{0}$ for no Output.

Example

055 Øஜ107 COOB9

Spot events

Block no.	$\mathbf{0 0 0 5 7}$
Length	$\mathbf{0 0 0 6 2}$
Type	Number
Validity	$\mathbf{0 .}$. 36

- Enter the identifier no. of the Output that will be activated by the Event (refer to Spot events).

Enter $\mathbf{0}$ for no Output.

Example

Block no.	$\mathbf{0 0 0 5 8}$
Length	$\mathbf{0 0 1 6 0}$
Type	Number

Enter 2 values for each Zone as follows.

- Value 1: enter the Identifier no. (1 through 128) of the Digital Communicator action for the Alarm on zone event---select from 128 available actions.

Enter $\mathbf{0}$ for no Action.

- Value 2: enter the Identifier no. (1 through 32) of the Dialler action for the Alarm on zone event----select from 32 available actions.

Enter $\mathbf{0}$ for no Action.
Note This Panel manages a maximum of 40 zones, therefore, parameters no. 82 through no. 160 are irrelevant.
Example

658	90160	$\begin{aligned} & \text { Qard5 } \\ & \hline \alpha 008 \end{aligned}$
058	00160	$\text { aran } 6$

Alarm on zone 08 will activate Digital Communicator action no. 8 and no Dialler action.

Digital Communicator and Dialler Actions for Tamper on zone

Block no.	$\mathbf{0 0 0 5 9}$
Length	$\mathbf{0 0 1 6 0}$
Type	Number

Enter 2 values for each Zone as follows.

- Value 1: enter the Identifier no. (1 through 128) of the Digital Communicator action for the Tamper on zone event---select from 128 available actions.

Enter 0 for no Action.

- Value 2: enter the Identifier no. (1 through 32) of the Dialler action for the Tamper on zone event---select from 32 available actions.

Enter $\mathbf{0}$ for no Action.
Note This Panel manages a maximum of 40 zones, therefore, parameters no. 82 through no. 160 are irrelevant.
Example

Tamper on zone 02 will activate Dialler action no. 2 and no action on the Digital Communicator.

Digital Communicator and Dialler Actions for General events (Part 1)

Block no.	00060
Length	$\mathbf{0 0 2 2 4}$
Type	Number

Enter 2 values for each of the 112 General events-Part 1 as follows.

- Value 1: enter the Identifier no. (1 through 128) of the Digital Communicator action for the General event---select from 128 available actions.

Enter $\mathbf{0}$ for no Action.

- Value 2: enter the Identifier no. (1 through 32) of the Dialler action for the General event---select from 32 available actions.

Enter $\mathbf{0}$ for no Action.

Example

General event no. 51 (Burglar alarm on panel) will activate Digital Communicator
action no. 8 and Dialler action no. 1.

Block no.	$\mathbf{0 0 0 6 1}$
Length	$\mathbf{0 0 2 1 4}$
Type	Number

Enter 2 values for each of the 107 General events-Part 2 as follows.

- Value 1: enter the Identifier no. (1 through 128) of the Digital Communicator action for the Alarm on zone event---select from 128 available actions.

Enter $\mathbf{0}$ for no Action.

- Value 1: enter the Identifier no. (1 through 32) of the Dialler action for the Alarm on zone event----select from 32 available actions.

Enter $\mathbf{0}$ for no Action.

Example

Digital Communicator and Dialler Actions for Spot events

Block no.	$\mathbf{0 0 0 6 2}$
Length	$\mathbf{0 0 1 2 4}$
Type	Number

Enter 2 values for each of the 62 Spot events as follows:

- Value 1: enter the Identifier no. (1 through 128) of the Digital Communicator action for the Spot event---select from 128 available actions.

Enter $\mathbf{0}$ for no Action.

- Value 2: enter the Identifier no. (1 through 32) of the Dialler action for the Spot event----select from 32 available actions.

Enter $\mathbf{0}$ for no Action.

Example

062	00124	$\begin{aligned} & \text { garen } \\ & \text { derd } \end{aligned}$
062	00124	2
		¢0000

Spot event no. 1 (Test) will activate Digital Communicator action no. 20 and no Dialler action.

Digital Communicator and Dialler Actions for Reset Alarm on zone

Block no.	$\mathbf{0 0 0 6 3}$
Length	$\mathbf{0 0 1 6 0}$
Type	Number

As per Block 00058 for reset of Alarm on zone events.
Note This Panel manages a maximum of 40 zones, therefore, parameters no. 82 through no. 160 are irrelevant.
Digital Communicator and Dialler Actions for Reset Tamper on zone

Block no.	$\mathbf{0 0 0 6 4}$
Length	$\mathbf{0 0 1 6 0}$
Type	Number

As per Block 00059 for reset of Tamper on zone events.
Note This Panel manages a maximum of 40 zones, therefore, parameters no. 82 through no. 160 are irrelevant.
Digital Communicator and Dialler Actions for Reset General events -Part 1

Block no.	00065
Length	$\mathbf{0 0 2 2 4}$
Type	Number

As per Block 00060 for reset of General events-Part 1.

Block no.	$\mathbf{0 0 0 6 6}$
Length	$\mathbf{0 0 2 1 4}$
Type	Number

As per Block 00061 for reset of General events-Part 2.
Initialize Test event

Block no.	$\mathbf{0 0 0 6 7}$
Length	$\mathbf{0 0 0 0 1}$
Type	Logi c

- Enter 1 to Initialize the Test event delay when the parameter programming phase ends.

Example

Test event parameters

Block no.	$\mathbf{0 0 0 6 8}$
Length	$\mathbf{0 0 0 0 5}$
Type	Number

Enter 5 values for the test event.

- Enable / Disable:

Enter 1 to enable the Test event
Enter $\mathbf{0}$ to disable the Test event

- Hour: enter the hour value (0 through 23).
- Minute: enter the minute value (0 through 59).
- First Test delay: enter the number of days before the first Test event will be generated (0 through 99).
- Repeat Test event: enter the number of days between Test events (0 through 99).

Example

Test event Enabled
The Test event will be generated at 23:30

3 days after the Initialization
and will be generated every 7 days

Date and Time

Block no.	00069
Length	$\mathbf{0 0 0 0 7}$
Type	Number

Enter 6 values as follows.

- Hour: enter 0 through 23.
- Minutes: enter 0 through 59 .
- Day: enter 1 through 31.
- Month: enter 1 through 12.
- Century: enter 0 through 99.
- Year: enter 0 through 99.
- Day of the week: enter 0 through $6(0=$ Monday, $6=$ Sunday $)$.

Example Enter the date as follows.

$\|$Hour: 17
Minutes: 00
Day:
9
Month: July
Year: 2001

Date format

Block no.	$\mathbf{0 0 0 7 0}$
Length	$\mathbf{0 0 0 0 1}$
Type	Logi \mathbf{c}

Enter the data format value as follows:
0 = Day/Month/Year
1 = Year/Month/Day
Example

Mains Filter time

Block no.	$\mathbf{0 0 0 7 1}$
Length	$\mathbf{0 0 0 0 1}$
Type	Number
Validity	$\mathbf{0 . . 6 5 0 0 0}$

Enter the Filter time value for Mains failure.

+ The Panel will ignore Mains Failure for the programmed Filter time but will generate a Mains failure event when the Filter time ends.
How to calculate the Filter time value:
---multiply the Filter time (in minutes) by 1000

Example

The Mains failure event will be generated 30 minutes after Mains failure detection.

Keypad Lockout on Code Error

Block no.	00072
Length	$\mathbf{0 0 0 0 3}$
Type	Number

Enter 3 Values as follows.

- Value 1: enter the number of wrong Codes allowed (as per requirements) before Keypad lockout.
- Value 2 and 3: enter the Lockout time value.

How to calculate the Lockout time value:
----multiply the chosen Lockout time (from 9 through 1800 seconds) by $\mathbf{0 . 1 3}$.
The result will be an integer (whole number) and a decimal fraction.
Enter the resulting integer for Value 3.
—multiply the resulting decimal fraction by 256.
Enter the resulting integer for Value 2, as per the example.

Example Chosen Lockout time $=30$ seconds:
----multiply $\mathbf{3 0}$ by $\mathbf{0 . 1 3 : (3 0 * 0 . 1 3 = 3 . 9) ~ t h e n ~}$
----multiply the decimal fraction by 256 (0.9 * $256=230.4$ rectified to 230).

- Value 2----enter 230
- Value 3----enter 3

072 C1008	$\begin{aligned} & \text { qaeø } \\ & \text { eqees } \end{aligned}$	5 wrong Codes will be allowed before the Keypad locks for 30 seconds.
072 C0008	$\begin{aligned} & \hline \text { COOR2 } \\ & \varnothing 023 \varnothing \end{aligned}$	
072 C1203	$\begin{aligned} & \text { QaøøB } \\ & \text { QøOB } \end{aligned}$	

General options

Block no.	00073
Length	$\mathbf{0 0 0 0 8}$
Type	Logi c

- Enter 1 to enable the following options.
- Enter $\mathbf{0}$ to disable the following options.

1 - Maintain Zone Test Attribute
2 - Disable Welcome message
3 - LEDs OFF on Key reader with no digital key
4 - Bypass tamper on zone
5 - Disable arming on battery trouble
6 - Disable tamper memory reset with User code
7 - Disable alarm memory reset with Installer code
8 - Enable panel-alarm stop with valid Digital key
Example The General options can be programmed as follows:

073	92008	
073	C2008	
073	92008	
073	COCD8	qapor
073	C2008	$\begin{aligned} & \text { QaصD } \\ & \text { QDODD } \end{aligned}$
073	COED8	
073	CODOB	$\begin{aligned} & \text { QaøD7 } \\ & \varnothing \varnothing \varnothing \varnothing \varnothing \end{aligned}$
073	С2008	agarg

Zone in test will be logged when the Partition is disarmed
Welcome message enabled

Key reader LEDs will be OFF when no digital key is present
Tamper alarm disabled on bypassed Zones
Arming allowed also in the event of battery trouble

Tamper alarm reset enabled for User code PIN
Alarm reset enabled for Installer code PIN
Stop Panel Alarm by valid Digital key enabled

Lock Installer code

Block no.	00074
Length	$\mathbf{0 0 0 0 1}$
Type	Logi c

Enter 1 to lock the Installer code PIN. A locked Installer Code PIN cannot be reset to factory default.

Example

Number	Event	Number	Event
$1 . .8$	Fire alarm on Partition	61	Warning fuse BPI
$9 . .16$	24h alarm on Partition	62	NOT AVAILABLE!
17.. 24	Burglar alarm on Partition	63	Warning mains failure
25.. 32	Generic alarm on Partition	64	Warning low battery
33.40	Tamper alarm on Partition	65	Warning power trouble
$41 . .48$	Generic+Tamper alarm on Partition	66	Warning mains failure on Power station
49	Fire alarm on Panel	67	Warning low battery on Power station
50	24h alarm on Panel	68	Warning power trouble on Power station
51	Burglar alarm on Panel	69	Warning generic
52	Generic alarm Panel	70	Trouble on BPI
53	Tamper alarm on Panel	$71 . .78$	Partition Armed
54	Generic+Tamper alarm on Panel	$79 . .86$	Exit time on Partition
55	Main unit open	$87 . .94$	Entry time on Partition
56	Balanced tamper	95.102	Valid key on Partition
57	Tamper on BPI devices	103	Valid key on panel
58	False key on Key reader	104..111	Alarm stop on Partition
59	NOT AVAILABLE!	112	Alarm stop on panel
60	Warning fuse $+B$		

General events-Part 2

Number	Event	Number	Event	
$1 . .40$	Bypass zone		Telephone line trouble	
$81 . .88$	Not ready to arm Partition		89	

Spot events

Number	Event		Number	
1	Test		61	Event
$2 . .9$	Reset on Partition		Teleservice request from OmniaMOD	
10	Reset on panel	62	Teleservice ON	
$11 . .20$	Super key $1,2,3,4,5,6,7,8,9,0$		63	Teleservice action failed
$21 . .28$	Chime on Partition		64	DTMF Communicator action failed
$29 . .60$	Recognized user code		65	Dialler action failed

BENTEL SECURITY s.r.I.
Via Florida, 3
63013 GROTTAMMARE (AP) - ITALY
Tel.: +39 0735735200
Fax: +39 0735634355
e-mail: bentel@bentelsecurity.com
http://www.bentelsecurity.com

[^0]: * 250 keys can be programmed----programming of keys 251 to 256 will be ignored.

